Machine Learning and the End of Theory: Reflections on a Data-Driven Conception of Health

dc.contributor.authorGuersenzvaig, Ariel
dc.date.accessioned2023-08-29T12:09:28Z
dc.date.available2023-08-29T12:09:28Z
dc.date.issued2023
dc.description.abstractTaking the notion of health as a leitmotif, this paper discusses some conceptual boundaries for using machine learning⁠ - a data-driven, statistical, and computational technique in the field of artificial intelligence⁠ - for epistemic purposes and for generating knowledge about the world based solely on the statistical correlations found in data (i.e., the "End of Theory" view⁠).The thrust of the argument is that prior theoretical conceptions, subjectivity, and values would - because of their normative power⁠ - inevitably blight any effort at knowledge-making that seeks to be exclusively driven by data and nothing else. The conclusion suggests that machine learning will neither resolve nor mitigate⁠ the serious internal contradictions found in the "biostatistical theory" of health⁠ - the most well-discussed data-driven theory of health. The definition of notions such as these is an ongoing and fraught societal dialogue where the discussion is not only about what is, but also about what should be. This dialogical engagement is a question of ethics and politics ⁠and not one of mathematics.en
dc.description.sponsorshipThis work has been funded by the Federal Ministry of Education and Research of Germany (BMBF) (grant no.: 16DII111, 16DII112, 16DII113, 16DII114, 16DII115, 16DII116, 16DII117 – „Deutsches Internet-Institut“)
dc.identifier.citationGuersenzvaig, A. (2023). Machine Learning and the End of Theory: Reflections on a Data-Driven Conception of Health. Proceedings of the Weizenbaum Conference 2022: Practicing Sovereignty, 53–65. https://doi.org/10.34669/WI.CP/4.5
dc.identifier.doihttps://doi.org/10.34669/wi.cp/4.5
dc.identifier.eissn2510-7666
dc.identifier.urihttps://www.weizenbaum-library.de/handle/id/76
dc.language.isoeng
dc.publisherWeizenbaum Institute
dc.relation.ispartofhttps://doi.org/10.34669/WI.CP/4
dc.relation.ispartofseriesWeizenbaum Conference Proceedings
dc.rightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectTechnology (Applied sciences)en
dc.subjectSociology & anthropologyen
dc.subjectTechnology Assessmenten
dc.subjectSociology of Science, Sociology of Technology, Research on Science and Technologyen
dc.subjectcomputer aided learningen
dc.subjecthealthen
dc.subjecteffects of technologyen
dc.subjectdigitalizationen
dc.subjectartificial intelligenceen
dc.subjectTechnik, Technologiede
dc.subjectSoziologie, Anthropologiede
dc.subjectMachine Learningde
dc.subjecthealth theoryde
dc.subjectmaschinelles Lernende
dc.subjectTechnikfolgenabschätzungde
dc.subjectWissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologiede
dc.subjectcomputerunterstütztes Lernende
dc.subjectGesundheitde
dc.subjectTechnikfolgende
dc.subjectDigitalisierungde
dc.subjectkünstliche Intelligenzde
dc.subject.ddc600 Technik
dc.subject.ddc300 Sozialwissenschaften
dc.titleMachine Learning and the End of Theory: Reflections on a Data-Driven Conception of Health
dc.typeConferencePaper
dc.type.statuspublishedVersion
dcmi.typeText
dcterms.bibliographicCitation.booktitleProceedings of the Weizenbaum Conference 2022
dcterms.bibliographicCitation.originalpublisherplaceBerlin
dcterms.bibliographicCitation.pageend65
dcterms.bibliographicCitation.pagestart53
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
WCP_2022.5_Guersenzvaig-Machine_Learning_and_the_End.pdf
Größe:
187.47 KB
Format:
Adobe Portable Document Format
Beschreibung: