Machine Learning and the End of Theory: Reflections on a Data-Driven Conception of Health

Lade...
Vorschaubild
Datum
2023
Herausgeber:innen
Autor:innen
Guersenzvaig, Ariel
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Weizenbaum Institute
Zusammenfassung

Taking the notion of health as a leitmotif, this paper discusses some conceptual boundaries for using machine learning⁠ - a data-driven, statistical, and computational technique in the field of artificial intelligence⁠ - for epistemic purposes and for generating knowledge about the world based solely on the statistical correlations found in data (i.e., the "End of Theory" view⁠).The thrust of the argument is that prior theoretical conceptions, subjectivity, and values would - because of their normative power⁠ - inevitably blight any effort at knowledge-making that seeks to be exclusively driven by data and nothing else. The conclusion suggests that machine learning will neither resolve nor mitigate⁠ the serious internal contradictions found in the "biostatistical theory" of health⁠ - the most well-discussed data-driven theory of health. The definition of notions such as these is an ongoing and fraught societal dialogue where the discussion is not only about what is, but also about what should be. This dialogical engagement is a question of ethics and politics ⁠and not one of mathematics.

Beschreibung
Schlagwörter
Technology (Applied sciences) \ Sociology & anthropology \ Technology Assessment \ Sociology of Science, Sociology of Technology, Research on Science and Technology \ computer aided learning \ health \ effects of technology \ digitalization \ artificial intelligence \ Technik, Technologie \ Soziologie, Anthropologie \ Machine Learning \ health theory \ maschinelles Lernen \ Technikfolgenabschätzung \ Wissenschaftssoziologie, Wissenschaftsforschung, Technikforschung, Techniksoziologie \ computerunterstütztes Lernen \ Gesundheit \ Technikfolgen \ Digitalisierung \ künstliche Intelligenz
Verwandte Ressource
Verwandte Ressource
Zitierform
Guersenzvaig, A. (2023). Machine Learning and the End of Theory: Reflections on a Data-Driven Conception of Health. Proceedings of the Weizenbaum Conference 2022: Practicing Sovereignty, 53–65. https://doi.org/10.34669/WI.CP/4.5