Bot, or not? Comparing three methods for detecting social bots in five political discourses

dc.contributor.authorMartini, Franziska
dc.contributor.authorSamula, Paul
dc.contributor.authorKeller, Tobias R
dc.contributor.authorKlinger, Ulrike
dc.date.accessioned2023-08-30T14:18:48Z
dc.date.available2023-08-30T14:18:48Z
dc.date.issued2021
dc.description.abstractSocial bots – partially or fully automated accounts on social media platforms – have not only been widely discussed, but have also entered political, media and research agendas. However, bot detection is not an exact science. Quantitative estimates of bot prevalence vary considerably and comparative research is rare. We show that findings on the prevalence and activity of bots on Twitter depend strongly on the methods used to identify automated accounts. We search for bots in political discourses on Twitter, using three different bot detection methods: Botometer, Tweetbotornot and “heavy automation”. We drew a sample of 122,884 unique user Twitter accounts that had produced 263,821 tweets contributing to five political discourses in five Western democracies. While all three bot detection methods classified accounts as bots in all our cases, the comparison shows that the three approaches produce very different results. We discuss why neither manual validation nor triangulation resolves the basic problems, and conclude that social scientists studying the influence of social bots on (political) communication and discourse dynamics should be careful with easy-to-use methods, and consider interdisciplinary research.
dc.identifier.citationMartini, F., Samula, P., Keller, T. R., & Klinger, U. (2021). Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data & Society, 8(2), 205395172110335. https://doi.org/10.1177/20539517211033566
dc.identifier.doihttps://doi.org/10.1177/20539517211033566
dc.identifier.eissn2053-9517
dc.identifier.urihttps://www.weizenbaum-library.de/handle/id/179
dc.language.isoeng
dc.relation.issupplementedbyhttps://doi.org/10.25384/SAGE.16435404.v1
dc.rightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjecttwitter
dc.subject.ddc320 Politikwissenschaft
dc.subject.ddc004 Informatik
dc.titleBot, or not? Comparing three methods for detecting social bots in five political discourses
dc.typeArticle
dc.type.statuspublishedVersion
dcmi.typeText
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.journaltitleBig Data & Society
dcterms.bibliographicCitation.volume8
local.researchgroupNachrichten, Kampagnen und die Rationalität öffentlicher Diskurse
local.researchtopicDemokratie – Partizipation – Öffentlichkeit
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Martini-et-al_2021_Bot-or-not-Comparing.pdf
Größe:
767.75 KB
Format:
Adobe Portable Document Format
Beschreibung:
Sammlungen