Extending the framework of algorithmic regulation. The Uber case

dc.contributor.authorEyert, Florian
dc.contributor.authorIrgmaier, Florian
dc.contributor.authorUlbricht, Lena
dc.date.accessioned2023-08-30T14:24:39Z
dc.date.available2023-08-30T14:24:39Z
dc.date.issued2022
dc.description.abstractIn this article, we take forward recent initiatives to assess regulation based on contemporary computer technologies such as big data and artificial intelligence. In order to characterize current phenomena of regulation in the digital age, we build on Karen Yeung’s concept of “algorithmic regulation,” extending it by building bridges to the fields of quantification, classification, and evaluation research, as well as to science and technology studies. This allows us to develop a more fine-grained conceptual framework that analyzes the three components of algorithmic regulation as representation, direction, and intervention and proposes subdimensions for each. Based on a case study of the algorithmic regulation of Uber drivers, we show the usefulness of the framework for assessing regulation in the digital age and as a starting point for critique and alternative models of algorithmic regulation.
dc.identifier.citationEyert, F., Irgmaier, F., & Ulbricht, L. (2022). Extending the framework of algorithmic regulation. The Uber case. Regulation & Governance, 16(1), 23–44. https://doi.org/10.1111/rego.12371
dc.identifier.doihttps://doi.org/10.1111/rego.12371
dc.identifier.eissn1748-5991
dc.identifier.urihttps://www.weizenbaum-library.de/handle/id/273
dc.language.isoeng
dc.rightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectalgorithmic regulation
dc.subjectartificial intelligence
dc.subjectautomated decisionmaking
dc.subjectbig data
dc.subjectquantification
dc.subject.ddc320 Politikwissenschaft
dc.subject.ddc004 Informatik
dc.titleExtending the framework of algorithmic regulation. The Uber case
dc.typeArticle
dc.type.statuspublishedVersion
dcmi.typeText
dcterms.bibliographicCitation.issue1
dcterms.bibliographicCitation.journaltitleRegulation & Governance
dcterms.bibliographicCitation.pageend44
dcterms.bibliographicCitation.pagestart23
dcterms.bibliographicCitation.volume16
local.researchgroupQuantifizierung und gesellschaftliche Regulierung
local.researchtopicVerantwortung – Vertrauen – Governance
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Eyert_et-al_2022_Extending-the-framework-of-alg.pdf
Größe:
366.14 KB
Format:
Adobe Portable Document Format
Beschreibung:
Sammlungen