Mapping a Dark Space: Challenges in Sampling and Classifying Non-Institutionalized Actors on Telegram

dc.contributor.authorJost, Pablo
dc.contributor.authorHeft, Annett
dc.contributor.authorBühling, Kilian
dc.contributor.authorZehring, Maximilian
dc.contributor.authorSchulze, Heidi
dc.contributor.authorBitzmann, Hendrik
dc.contributor.authorDomahidi, Emese
dc.date.accessioned2024-01-26T16:17:27Z
dc.date.available2024-01-26T16:17:27Z
dc.date.issued2023
dc.description.abstractCrafted as an open communication platform characterized by high anonymity and minimal moderation, Telegram has garnered increasing popularity among activists operating within repressive political contexts, as well as among political extremists and conspiracy theorists. While Telegram offers valuable data access to research non-institutionalized activism, scholars studying the latter on Telegram face unique theoretical and methodological challenges in systematically defining, selecting, sampling, and classifying relevant actors and content. This literature review addresses these issues by considering a wide range of recent research. In particular, it discusses the methodological challenges of sampling and classifying heterogeneous groups of (often non-institutionalized) actors. Drawing on social movement research, we first identify challenges specific to the characteristics of non-institutionalized actors and how they become interlaced with Telegram’s platform infrastructure and requirements. We then discuss strategies from previous Telegram research for the identification and sampling of a study population through multistage sampling procedures and the classification of actors. Finally, we derive challenges and potential strategies for future research and discuss ethical challenges.en
dc.identifier.citationJost, P., Heft, A., Buehling, K., Zehring, M., Schulze, H., Bitzmann, H., & Domahidi, E. (2023). Mapping a Dark Space: Challenges in Sampling and Classifying Non-Institutionalized Actors on Telegram. Medien & Kommunikationswissenschaft, 71(3–4), 212–229. https://doi.org/10.5771/1615-634X-2023-3-4-212
dc.identifier.issn2942-3317
dc.identifier.urihttps://www.weizenbaum-library.de/handle/id/435
dc.language.isoeng
dc.rightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectsampling
dc.subjectclassification
dc.subjectnon-institutionalized actors
dc.subjectTelegram
dc.subjectliterature review
dc.subjectunknown population
dc.titleMapping a Dark Space: Challenges in Sampling and Classifying Non-Institutionalized Actors on Telegram
dc.typeReviewArticle
dc.type.statuspublishedVersion
dcmi.typeText
dcterms.bibliographicCitation.doi10.5771/1615-634X-2023-3-4-212
dcterms.bibliographicCitation.issue3-4
dcterms.bibliographicCitation.journaltitleMedien & Kommunikationswissenschaft
dcterms.bibliographicCitation.pageend229
dcterms.bibliographicCitation.pagestart212
dcterms.bibliographicCitation.urlhttps://www.nomos-elibrary.de/10.5771/1615-634X-2023-3-4-212/mapping-a-dark-space-challenges-in-sampling-and-classifying-non-institutionalized-actors-on-telegram-jahrgang-71-2023-heft-3-4
dcterms.bibliographicCitation.volume71
local.researchgroupDynamiken der digitalen Mobilisierung
local.researchtopicDigitale Märkte und Öffentlichkeiten auf Plattformen
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Heft-Buehling-ea_2023_Mapping-a-Dark-Space.pdf
Größe:
316.64 KB
Format:
Adobe Portable Document Format
Beschreibung: